Create an Account

Already have account?

Forgot Your Password ?

Home / Questions / In Section 55 the oneterm approximation to the series solution for the temperature distrib...

In Section 55 the oneterm approximation to the series solution for the temperature distribution was developed for a plane wall of thickness 2L that is initially at a uniform temperature and

In Section 5.5, the one-term approximation to the series solution for the temperature distribution was developed for a plane wall of thickness 2L that is initially at a uniform temperature and suddenly subjected to convection heat transfer. If Bi

 

(a) Determine the midplane, T(0, t), and surface, T(L, t), temperatures at t = 100, 200, and 500 s using the one-term approximation to the series solution, Equation 5.43, What is the Biot number for the system?

(b) Treating the wall as a lumped capacitance, calculate the temperatures at t = 50, 100, 200, and 500 s. Did you expect these results to compare favorably with those from part (a)? Why are the temperatures considerably higher?

(c) Consider the 2- and 5-node networks shown schematically. Write the implicit form of the finitedifference equations for each network, and determine the temperature distributions for t = 50, 100, 200, and 500 s using a time increment of ∆t = 1 s. You may use IHT to solve the finite-difference equations by representing the rate of change of the nodal temperatures by the intrinsic function, Der(T, t). Prepare a table summarizing the results of parts (a), (b), and (c). Comment on the relative differences of the predicted temperatures.

Jun 27 2020 View more View Less

Answer (Solved)

question Subscribe To Get Solution

Related Questions