Service

Chat Now

For a given law of motion of a particle M find a location of a particle for a time ti in sec trajectory velocuty tangential normal and full acceleration

For a given law of motion of a particle M find a location of a particle for a time ti in sec trajectory velocuty tangential normal and full acceleration

For a given law of motion of a particle M find a location of a particle for a time ti (in sec), trajectory, velocuty, tangential, normal and full acceleration. I 2 1 - 1/2 2 1. 1 13 14 1 2 ==(C), -2t +3 4 cos? (st/3) +2 - cos(x+2/3) +3 40 +4 2 sin(st/3) 3t2 +2 342 - 4+1 7 sin(ata/6) + 3 -3/(t+2) -4cos(t/3) 412 41 5 sin? (st/6) 5 cos(*62/3) - 2 - 2 4 cos(xt/3) 3 7 sinº (at/6) -5 1+3 cos(x+2/3) –5t² - 4 2-31 - 6t? 6 sin(st/6) -2 7t2 - 3 3 - 31? + -*cos(xt/3)-1 -6t 8 cos? (nt/6)+2 -3 - 9 sin(x+2/6) --4t+1 5tº + 5t/3 - 3 2 cos(*t/3) - 2 V = y(t), CM --50 4 sin?(*/3) sin(at2/3)-1 -41(+1) -3.cos(st/3) + 4 -146 5t? – 6t3 - 2 - 7 cos( /6) 31 +6 - 2 sin(at/3) - 3 8 - 31 ---5 cosa (/6) --3 -5 sin(st2/3) -2/(t+1) --3 sin(*t/3) 4+2 +1 -7 cos?(nt/6) 3 sin(at2/3) +3 30 3 - 31/2 - 312 6 cos(art2/6) +3 5t 4-5t2 + 5t/3 - 4 sin(t/3) - 2t? – 4. -8 sin(*t/6) -- 7 -9.cos(*+2/6) +5 --3t 3t+t+3 - 2 sin(+2/3) +3 16 1/2 17 1. 1 . 0301 1020 1/4 - 1 1 1 1

mahesh 20-Aug-2020

Answer (Solved)

question Get solution